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A numerical code FLOCS (flow code for stellarators), allowing a self-consistent computa- 
tion of neoclassical stellarator transport, has been developed. Starting from a bounce-averaged 
kinetic equation, the distribution function (f) is found as a function of one spatial variable 
(poloidal angle) and two velocity-space variables (energy and a pitch-angle (pa) variable). 
Special care is needed at the phase-space boundary where particles can entrap (detrap) colli- 
sionlessly into (out of) a helical ripple. The natural choice for the pa variable is therefore 
the ripple-depth parameter y being 1 at the trapping boundary, approaching 0 for very 
deeply trapped particles, and going to cc for very passing particles. Since (f’) is to contain 
information from which, in addition to the radial fluxes (and thus the confinement times 
and the ambipolar electric field), the parallel flows and currents should be computable, 
the entire velocity space must be covered, including very large y values. Numerical stability 
arguments in combination with CPU-time considerations, on the one hand, versus the phy- 
sical behavior of (f) for very large y values, on the other hand, suggested the use of a multi- 
mesh approach (in the variable y) up to a reasonable value of yw 100. FLOCS extends the 
range of validity of a previously developed bounce-averaged code FPSTEL. After presenting 
some issues concerning FPSTEL, which are of relevance to our approach, the code 
FLOCS is described in detail, and some initial results on the distribution function are given. 
czl 1991 Academic Press. Inc. 

I. INTRODUCTION 

Stellarators are a serious alternative to the main tokamak line in magnetic fusion, 
partly because anomalous losses seem to be smaller than in tokamaks, presumably 
because of the absence of a large inductively generated current in stellarators. 

Neoclassical transport, being the transport caused by magnetic-field 
inhomogeneities, thus seems to be relatively more important in stellarators than in 
tokamaks. 
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In addition to confinement time and radial fluxes, it is imperative to investigate 
a different prediction of neoclassical theory: the existence of a parallel current 
proportional to the pressure gradient, known as the bootstrap (bs) current. 

In stellarators, this parallel current could be disadvantageous because it could 
jeopardize equilibrium and/or stability. On the other hand, it could turn out to be 
a blessing rather than a curse, in that it might help to provide additional rotational 
transform in low aspect-ratio stellarators, in which it could be difficult to obtain 
the required rotational transform solely from external currents flowing in helical 
windings or modular coils. Once the bs current is known in stellarators, the impor- 
tance of anomalous losses should be reconsidered. 

These are some of the reasons why the study of neoclassical transport in 
stellarators needs attention. In the present work we have developed a self-consistent 
numerical computation of stellarator neoclassical transport. 

Although useful analytic treatments exist, they have concentrated on asymptotic 
regimes, and used other simplifications. Interaction between species is usually 
neglected. Even the recently developed moment-equation approach [ 1, 21 has been 
used in ways which suffer from many of the assumptions usually made in analytic 
kinetic theory. The same can be said about numerical computations undertaken 
previously. Although they undoubtedly add to the mosaic of different viewpoints, 
they also suffer from some shortcomings. As will be discussed below, in some of 
that work, certain physical processes had to be ignored for computational purposes 
(which, although presenting a problem for describing the correct particle trajec- 
tories, do not seem to affect the transport results, however-at least not for the 
cases investigated so far). 

The code FLOCS (flow code for stellarators), that we developed and that is 
described in this paper, computes the radial particle fluxes and the bs current in 
stellarators. We consider a fully-ionized proton-electron plasma with parameters 
typical of a reactor. Both species are effectively treated simultaneously and are 
described as perturbed Maxwellians. The species are not ascribed to particular 
asymptotic collision-frequency regimes but are distributed according to the 
dependence of their Maxwellian on energy. The radial ambipolar electric field is 
determined self-consistently. The radial fluxes for that electric field determine the 
particle confinement time. 

Whereas computation of particle fluxes in steilarators tends to concentrate on the 
region in velocity space where the parallel velocity of the particles is small, i.e., 
where particles are trapped in magnetic wells, the computation of the parallel 
current must deal with the entire velocity space. The trapped/untrapped transition 
region is of particular importance for the current, though, in that the boundary 
condition there is responsible for driving the current. Our code, FLOCS, handles 
both aspects appropriately and, as a result, it is able to compute the bs current in 
addition to the radial fluxes. Also, because FLOCS considers the complete velocity 
space (0 < u,, <u and in principle 0 < v < a3), it has the capability of incorporating 
momentum-restoring terms in the collision operator, which make sure that momen- 
tum is conserved during Coulomb collisions. These terms are known to affect the 
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bs current considerably in an axisymmetric tokamak; in stellarators, the situation 
is less clear. 

In this paper we give a comprehensive account of the physics questions and the 
numerical issues incorporated in and addressed by the bounce-averaged transport 
code FLOG. Our work is based on a logic similar to that employed in the 2 D 
Fokker-Planck code FPSTEL developed by Mynick and Hitchon [3] and Hitchon 
and Mynick [4], a code designed to compute the radial particle fluxes of a single 
species with a given energy. Our code can be considered as an improved and 
extended version of FPSTEL. Although familiarity with the treatment of 
Refs. [3, 41 might help to better understand the present paper, we provide the 
reader here with the necessary features of FPSTEL, so as to show how our work 
differs from and builds upon the work reported in the aforementioned papers. 

This paper is organized as follows. In Section II, we review the basic neoclassical 
transport mechanisms in stellarators and comment briefly on the present status of 
stellarator-transport calculations. In addition, Section II gives us the opportunity to 
define our symbols. Section III deals with a description of the bounce-averaged 
Fokker-Planck code FPSTEL. Then, in Section IV, the physics embedded in our 
newly developed code FLOCS is explained in some detail. In Section V, we focus 
on the numerical implementation. Section VI represents some results obtained with 
FLOCS. Section VII summarizes the paper. 

II. BASIC CONCEPTS OF NEOCLASSICAL STELLARATOR TRANSPORT 
AND STATUS OF COMPUTATIONAL EFFORTS 

In this section we summarize the current status of stellarator neoclassical trans- 
port, the bulk of which consists of ripple transport. Our discussion is short because 
recent reviews have described analytic ripple transport computations (Kovrizhnykh 
[5]) and numerical studies (Beidler [6]). 

The simplest model for mod(B) along a field line, which has the features of 
standard stellarators, can be represented by 

B = B, ( 1 - E, cos 8 - E,, cos( IO + m[)); (1) 

E, = r/R is the amplitude of the sinusoidal variation due to the toroidal field, 
whereas sh is the amplitude of the helical ripple (Fig. 1). An exact expression for E,, 
can be quite complicated [7, 81, but for the present purposes we set E,, = shOr’, 
where E,,~ is a constant and r is a typical minor radius, defined below. The integers 
1 and m are the stellarator multipolarity and the number of field periods, respec- 
tively. 

The configuration space has been parameterized by the flux coordinates 
(Y,, 19, 0, with 0 the poloidal angle and [ the toroidal angle, oriented as in Fig. 2. 
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FIG. 1. Variation of mod 5 along a field line in a stellarator with I = 2, m = 12, t = 1.47, E~/E, = 1.26. 
5 is expressed in Tesla (from Ref. [6 3). 

Minor Axis of Torus 

FIG. 2. Orientation of the (rl 0, i) coordinate system. 
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27cY, is the toroidal magnetic flux enclosed by a flux surface. Rather than working 
with Y,, however, it is convenient to work with an effective radius [3] 

112 r(Y,)= 5 . c > 0 

Particles with low u,, can become trapped by the helical ripples. While trapped 
they drift away from the field line due mainly to grad-B and E x B drifts. In com- 
bination with collisions, these deviations give rise to a random walk and hence 
diffusion. 

A convenient way to characterize the trapping state of a particle in a ripple well 
is by means of the ripple-depth parameter y defined as 

YE Bturning - Bmin (ripple well) 
B,,, (ripple well) - Bmin (ripple well)’ 

Using the usual approximation that CI s E,t/(mch) 6 1, this becomes 

y= K-(I-&,COSB-&J 
L PBO 

(2&h) 

E k2 (most references); (4) 

K, p, and t are the kinetic energy, the magnetic moment m,v:/2B, and the rota- 
tional transform, respectively (m, is the mass of species a). Bturning = K/p is the 
value of B where the particle bounces, i.e., where v,, = 0. B,,, and Bmin are the local 
maximum and minimum of the ripple well, respectively. We also indicated that 
the usual symbol employed is k2. We use y rather than k2 for agreement with 
Refs. [3, 43. 

Particles with 0 < y < 1 are ripple trapped, while those with y > 1 are either 
toroidally blocked or passing. y is not a constant of the motion, in contrast to ,LL 
y is related to the velocity-space variables K and p. The variable y is very well 
suited to describe the trapping state of a particle. 

A particle moving along a field line sees its y change when the field line travels 
from the outside of the device (0 = 0) to the inside (0 = rr), because B changes 
underneath it. Further, radial motion changes the electrostatic potential @ and thus 
K, without changing the total energy E = K+ q@ or ,L As a consequence, particles 
that have a y near 1 can become trapped or detrapped by moving in 8 or r. 

Collisions can change the pitch angle, i.e., the ratio u,,/ul, of a particle gradually 
(via small-angle deflections) and alter its p and hence y. Thus, collisions can also 
influence the trapping state of particles. This is known as collisional entrapping and 
detrapping, to distinguish it from the collisionless process just described. A 90” 
deflection in velocity-space pitch angle, from p =0 or y -+ co, to p= K/Bmi, or 
y = 0 takes a time of roughly v I ‘. To detrap a particle from the trapped region to 
a just-untrapped state requires less time; it happens at a rate v,~ = vh = vD/(2&,,) 
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since ripple-trapped particles occupy only a fraction N (2.s,)“’ of the velocity space. 
(vg = v./2, where v1 is that defined in the “NRL Plasma Formulary” [9].) 

The analytic kinetic computations in the literature concentrate mainly on the 
ripple-trapped region and usually ignore the region y > 1 (but see Mynick [lo] and 
Beidler et al. [ 1 l] for exceptions to this). For diffusion, a “bounce-averaged” (ba) 
formalism is usually adequate. All quantities involved related to ripple-trapped par- 
ticles are time averaged between the bounce points in a helical-ripple well by means 
of a ba operator. The ba procedure usually assumes that the ripple wells are sym- 
metric. In the limit of low rotational transform per held period, t/m + 0, motion 
along the field line is equivalent to moving in [ only, while Q remains constant. The 
larger the number of ripples per toroidal trough, when moving along a field line, 
the more accurate the ba procedure becomes. The peculiarities of the ba process 
have been examined and discussed by Beidler [6]. 

The drift-kinetic equation on which the analysis is based is the usual one: 
(v,, + vI) . Vf = C(j). A linearization about a Maxwellian ,fM is performed. Bounce 
averaging over a helical ripple (denoted by angle brackets ( )) removes the 
v,, -V term in the ripple-trapped region. The ba equation for (f, ) = (f) -.f,,, is 
(neglecting small beating terms) [3,4] 

(5) 

in (a v) variables. Here (i), (b), and ( j) are the phase-space velocities: i stands 
for vD .VY/lV!Pv(, with vg the perpendicular guiding-center drift, while ( j) = j 
equals ay/83( 4) + @l&(i), describing the changes in y, including collisionless 
entrapping and detrapping. This variation in y, produced by flow, is only important 
at very low collision frequencies since collisions cause the dominant changes in y, 
otherwise. The term (i) &/& acts as the driving term in the equation. (C,) is 
the collision operator expressed in terms of y. Since the variable y characterizes the 
degree to which a particle is helically trapped, it is the natural variable to be used 
in a ba formalism. 

According to the relative magnitudes of the frequencies (4) and vh, the latter 
appearing in (C,,), one distinguishes three asymptotic collision-frequency regimes. 
They are characterized by the dependence of the diffusion coefficient on the colli- 
sion frequency. One has the v, vli2, and v-’ regimes from low to high collision 
frequency. (See Refs. [S, 61 for the physical mechanisms and relevant references.) 

Recently, a “unified theory of ripple transport in stellarators” has been developed 
by Beidler et al. [ 11, 61. The three usual asymptotic regimes are all considered 
simultaneously. The authors employ an extension of the solution scheme commonly 
used for the v112 regime. The results of this unified theory were compared with 
several numerical results (Monte Carlo, FPSTEL, and DKES, all to be discussed 
below), and the agreement is remarkable. 

As we alluded to above, particles that become detrapped will most likely be 
toroidally blocked. These particles undergo radial diffusion essentially similar to 
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banana diffusion in an axisymmetric tokamak. Although these blocked particles do 
not exhibit pure banana-type diffusion because of non-axisymmetry and because of 
the influence of the ripple-trapped region on the blocked region, the simple addition 
of axisymmetric tokamak diffusion coefficients (banana-plateau) to the ripple trap- 
ping induced diffusion coefficients (v, v”*, v-’ ) gives an adequate estimate for the 
expected overall transport. An example of the numerical results obtained from 
FPSTEL [4] for a single ion species versus the asymptotic analytic results for 
tokamaks and stellarators is shown in Fig. 3. 

The total radial particle flux in non-axisymmetric devices is not automatically 
ambipolar, in the sense in which this is true in an axisymmetric device [ 131 because 
conservation of toroidal angular momentum in not guaranteed in these machines. 
Since one of the species will be lost faster than the other, a (mainly) radial electric 
field will be set up. The steady-state electrostatic field is obtained from the 
constraint 

in which q, and r, represent the electric charge and the flux-surface averaged radial 
flux, respectively. (In Ref. [ 121 we have considered the ambipolarity issue in detail.) 

Besides purely kinetic computations, attempts to compute radial fluxes and 
parallel flows and currents have been undertaken via a moment-equation approach, 
which originates with Hirshman [l, 141. 

Shaing and Callen [2] generalized the Hirshman formalism to non-axisymmetric 
magnetic fields and set the framework for stellarator geometries. This and sub- 

FIG. 3. Comparison of numerical results obtained from FPSTEL [4] with analytic results. D, and 
D,,, are the tokamak banana and plateau regimes, respectively. The upper solid line represents the 
stellarator ripple-diffusion coefficient. The dashed line is the sum of ripple and banana transport. 
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sequent treatments [15-221, however, have been limited to the higher-frequency 
regimes (l/v, plateau, and Plirsch-Schliiter); typical stellarator regimes, v”* and v 
have not been considered. 

In the moment-equation approach, the radial fluxes and the parallel currents are 
expressed in terms of the flux-surface averaged toroidal and parallel components of 
the viscous-force density. The latter are computed from kinetic theory, showing that 
they are proportional to (generalized) poloidal and toroidal flows. The advantage 
of the moment-equation approach is that momentum conservation of the collision 
operator is easily incorporated in the formalism. 

The bootstrap current originates from the trapped-passing particle dynamics and 
is thus related to the same processes which are responsible for neoclassical radial 
diffusion. According to the kinetic picture, this current is driven by the momentum 
present in the trapped population immersed in a pressure gradient (a diamagnetic- 
like flow carried by particles with closed orbits). In the fluid-based model, the 
bootstrap current is explained as the difference between parallel ion and electron 
flows resulting from the viscous damping of the electron flow, by the trapped 
population. 

The theory behind the bootstrap current in axisymmetric tokamaks is quite well 
understood. In stellarators, the situation is less clear, because of the different classes 
of trapped particles. Presently, it is widely accepted [S, 2, 201 that a non-zero bs 
current is predicted by kinetic neoclassical theory in the lower collision-frequency 
regimes. Specifically, the bs current is driven by the parallel viscous-force density 
((B.V.TI,)) [21], which is given by ((Bjd3um,v,, (~,,fi.Vf’))). (The double 
angle brackets represent the flux-surface average.) 

The most obvious way to compute the current in stellarators is via its definition, 
J = ne(u, - u,). The fluid flows uj are the v moments off’. FLOCS computes the bs 
current as J,, = ne(u,, i - u,, ,), in which the parallel flows are computed numerically 
as the u,, moments of fJ. 

Previous numerical computations of stellarator neoclassical transport have been 
developed along three lines: Monte Carlo simulations, a variational solution of the 
drift-kinetic equation (DKES), and a finite-differencing approach to solving the ba 
drift-kinetic equation (FPSTEL). For Monte Carlo techniques, we refer to Beidler 
[6]. Some physics issues, relevant to our code FLOCS, addressed by DKES, are 
touched upon momentarily. A short description of the ideas incorporated in 
FPSTEL is given in the next section. 

Hirshman et al. [23] have developed a numerical code to solve the linearized 
drift-kinetic equation, in which collisions are modeled by the Lorentz operator. The 
solution involves a variational principle in which the trial functions are expanded 
in a Fourier-Legendre series. Further, the approach relies on a very efficient 
numerical matrix-inversion scheme. 

To make the method work, a self-adjoint form of the kinetic equation is required. 
As a consequence, some compromises as to the physics had to be made. Rather than 
projecting onto a drift surface, the particle motion is projected onto a flux surface. 
This implies that the radial excursion off a flux surface is disregarded in the change 
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of the pitch angle. The approximation is valid for particles far away from the 
trapping/detrapping boundary in phase space, but it distorts the collisionless 
trapping/detrapping process substantially. When a particle moves radially outward 
in the presence of a large radial electric field it sees its kinetic energy changed, 
AK = E - q A@. Since the particle has a constant p, a small radial excursion thus 
can provide enough parallel kinetic energy to make it detrap: an amount 
AK,, = sh K will certainly detrap the particle, Hence the trapping/detrapping physics 
is not correctly described by DKES. This is one of the reasons why the radial 
particle fluxes computed by DKES are insensitive to the sign of the electric field. 
See also Ref. [24]. 

The DKES code can handle complicated magnetic geometries; the number of 
harmonics in B kept is virtually unlimited. No bounce averaging over a helical 
ripple is performed. 

Although the physics embedded in DKES does not allow a proper description of 
the particle orbits, implying an implicit insensitivity to the sign of the radial electric 
field, it should be pointed out that this does not seem to matter too much for com- 
putation of the transport coefficients, as can be concluded from comparison with 
other numerical results (in the parameter regimes investigated so far) [3, 61. The 
codes FPSTEL [3,4] and FLOCS, to be described in this paper, do describe the 
“sickle-shaped” and “deformed-circle” particle trajectories, for the two signs of the 
electric field, quite accurately. However, they do not seem to show a “significant” 
dependence of the diffusion coefficient on the sign of E,, because in the (4) phase- 
space flow velocity the (cos yl) term is neglected and (effectively) only the Q, term 
is kept (apart from a small correction to make the divergence condition satisfied 
-see Eq. (20), below). (A possible boundary-layer effect due to a discontinuous 
jump of the particle trajectories which depends on the sign of the electric field, has 
not yet manifested itself for the configurations and computations considered.) The 
original discrepancy between the results of Ref. [4] and what DKES predicted 
[ 1 l] for the so-called transport-optimized stellarators (cr cases) has been resolved 
by Beidler [6], by renormalizing the abscissa of Fig. 3 to v,/(B). 

III. BOUNCE-AVERAGED FOKKER-PLANCK CODE 
FOR STELLARATORS (FPSTEL) 

We now give a fairly complete description of the ba FokkerPlanck code 
developed by Mynick and Hitchon [3, 43. This work establishes the framework 
upon which our computation, to be discussed in the next section, will be based. We 
shall emphasize those issues which are important for our problem. 

The code FPSTEL computes the distribution function as a function of two 
variables, y and 8, for a single species. The radial position of the particles is roughly 
constant because the radial drift velocity is small. Therefore f is computed at a 
constant radius, reducing r to a parameter. Attention should be drawn to the fact 
that although i is small, it is properly incorporated in the driving term. Also, 
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its influence on the change of y, i.e., j, is taken into account in order to describe 
collisionless trapping and detrapping accurately. As explained in Ref. [3], the 
“small” term (i) a(,f, )/&I,, is neglected but not the term (i) a(,f, )/&I,; conver- 
sion from p to y as a variable, generates an important term in the expression for 
j. 

Collisions are modeled with a Lorentz operator in which the collision-frequency 
parameter v can be changed through its energy and density dependence. Energy 
scattering is absent, allowing the computation to be done on a constant-energy 
shell, the kinetic energy being equal to the thermal energy. 

Since the computations are done on a flux surface, Y = constant, kinetic energy 
and total energy are equivalent. Caution is needed, however, when derivatives with 
respect to Y are taken. 

The kinetic equation, “time averaged over a helical ripple,” can be expressed in a 
form similar to Eq. (5). However, one should distinguish between y < 1 and y > 1. 
The averaging operator will annihilate the v ,, . Vf = v,, df/dl term in the equation for 
ripple-trapped particles (which have y < 1); for those particles a( f )/al = 0, since 
(f) is a true bounce average. For non-ripple-trapped particles ( y > 1 ), the equa- 
tion is merely time averaged over the time it takes a particle to cross a ripple well 
C31, and although <f >ly, I is independent of the small-scale variations of 1, due to 
the ripples, it is not constant on the large scale length of several ripples. For par- 
ticles with y > 1, the v,, af/al term becomes after time averaging (v,, ) a( f )/al,, = 
[(v,,)/(R/t)J i?(,f),@f$ since dfdl,,= (R/+)dd. So, (f)l,-,, is not a bounce-averaged 
distribution function in the literal sense, only averaged over the time it takes to 
cross a helical ripple; we attached a subscript “au” to I to stress that (,f)l?, , is 
only sensitive to slower variations in 1. 

Compactly written, the equations read: 

y<l. a(fl) acf,) 
. r+ (b< 7+Jb / 

y>l. a(fl) acfd 
. at+ @>> TfA y-(c(f;)))=-(i)~. (8) 

We have attached subscripts < and > to the phase-space velocities (8) and 4, 
according to whether they must be used for y < 1 or y > 1. The radial drift velocity 
(i) is the average of i, given underneath Eq. (5), while the poloidal precession 
frequencies are given by 

@>< = u&h)? (9) 

@>> =f (v,,). (10) 

For y < 1, only the perpendicular guiding-center drift, ( vD . VO) = ( hph ), survives 
since (v,, )( y < 1) = 0. For toroidally-blocked and passing particles, the average 
free-streaming part dominates over the 8,,,, term by several orders of magnitude so 
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that the latter can be neglected. The phase-space velocities j are related to i and 
the respective %‘s via the expression given underneath Eq. (5). 

Equations (7) and (8) are not averaged equations in the exact sense. Rather, they 
are equations in which all quantities have been averaged; the product of the 
averages instead of the average of the product has been taken. Consequently, the 
equations are approximations to the true averaged equations, in which small 
beating terms have been neglected. 

FPSTEL computes the particle fluxes due to ripple-trapped and toroidally- 
blocked particles in the low-collision-frequency regimes. Therefore, an explicit 
assumption throughout the code has been made that y < ET’, implying from Eq. (3) 
that K- @, N ,&. In the next section, we shall give more general expressions 
holding for large y values and point out how to recover the simplified forms which 
hold for K 2: pB,. 

The magnetic-field geometry in the Mynick and Hitchon [3] paper has been 
chosen such that B - -4; the toroidal field points in the negative [ direction. 

Helically-trapped particles are described next. For particles with small y values, 
for which FPSTEL is applicable, uf, < u: and the grad B drift is dominant over the 
curvature drift. The ripple-averaged guiding-center-drift velocity is approximately 

(u*) =L=K 
m,w,.R m,o,.R’ (11) 

(v, is the grad B part of vDI; m, represents the mass of species a.) The radial and 
poloidal components of the (roughly vertical) drift are 

(i>=(v,)sin%, (f&J =(““>cos 8. 
r (12) 

(A more correct expression for (%,) would contain a term proportional to 
(cos q), where q is the ripple phase, q = I% + ml [6]. Since this part of the poloidal 
precession, as well as that given by Eq. (12b), is assumed to be completely 
overshadowed by the poloidal E x B drift, to be discussed next, it need not be 
considered.) 

The E x B drift velocity due to a radial ambipolar electric field is within the flux 
surface and is roughly in the poloidal direction: 

(&)E (Q,)=YE’=E, 
m,w,.r rB’ (13) 

As for any E x B drift, Q, is independent of the species. 
The total ba poloidal velocity for y < 1 does not contain any free-streaming so 

that we have 

(b< = (&A> = 0,) + (Q,). (14) 

ss1/95/1-9 
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Typically, one has that 8,/Q,- E ,/(q@/T) which is small for the expected poten- 
tials, which are of the order of the temperature. The subscript ph indicates that d,,, 
is the physical poloidal drift frequency in contrast to the numerical one, e,, which 
will be introduced momentarily. 

To find an expression for the phase-space velocity j, one could use its definition 
in terms of the r and 0 phase-space flows, ( j} = j = 13y/%(b) + ay/ai-(s). 
However, straightforward computation with the approximate drift velocities of 
Eqs. (12) and (14) does not provide an accurate enough result because the leading- 
order terms of ay/atI(b) and dy/dr(i) cancel each other. What is left is of the same 
order as the error made in the approximations used to obtain the approximate 
drifts. Pursuing this exercise is useful though, because it demonstrates that the 
ay/ar( i) term is important, in turn showing that the (i ) a(fi )/Jr term can only 
be neglected in the kinetic equation after the conversion from p to y has been 
performed. 

As Mynick and Hitchon [3] recognized, a convenient and accurate way to find 
j < is from the invariance of the second adiabatic invariant I - j dl m, u,, . I has been 
computed in Ref. [3], and, for an I = 2 stellarator (for which E,,=E,,~Y~), it was 
found to be proportional to rA( y), where A(y) is a combination of elliptic 
integrals. Conservation of I implies that d/dt(rA( y)) = 0, or that 

j =_(l:>A, < r A’ (15) 

The dot represents a total time derivative and the prime indicates differentiation 
with respect to the argument, here y. Expressions for A and A’ are given in 
Ref. [3]. 

FPSTEL solves the kinetic equation via relaxation of its finite-difference equiva- 
lent. To guarantee numerical conservation of particles, the equation is converted to 
conservation form. To do this, the divergence of the phase-space flow must be zero: 

(16) 

Here (J) is the (averaged) Jacobian, expressed in the variables (r, 0, E, y). 
To check whether Eq. (16) is satisfied, the Jacobian must be specified. From 

Ref. [3], 

(J), -4nrR~(E,li)li24’-4nrR~A’. 
fl 0 

With this Jacobian, (J) cc r’A’( y), Mynick and Hitchon [3] write 

a(J)<+> = -2 a(J)<.?> = -2 a<J>&> 
dr ay a0 (18) 
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and therefore that 

a(J)(r) a(J)(Y) a(Jx$7h) =O 
ar + ay + de ’ (19) 

since (Q,) and (J) are independent of 8. In Ref. [3] a typographical error has 
occurred in the sign of the y derivative in Eq. (18). 

We should like to draw attention to a minor inaccuracy in the derivation of 
Eq. (19) in Ref. [3]. The divergence, Eq. (19) is to hold for the set of variables 
(r, 0, Y), i.e., with r still considered as a variable. However, the r derivative in 
Eq. (19) is to be taken at constant total energy E. The Jacobian (J) of Eq. (17) is 
expressed in terms of the kinetic energy K = E - q@(r), and so the a/h would give 
rise to an electric field term Q’(r). This neglect has no repercussions, however, 
because a correct computation, in which the 8 dependence of (J) is kept by not 
replacing p by K/B,, shows that this electric field term contribution is canceled by 
the (Q,) a(J)/89 term. (The d-dependent (J) is considered in the next section.) 
For the given drift velocities (which are themselves accurate to order E), the 
divergence condition is satisfied exactly. 

A second reason why this omission in a/& is not very important is because in the 
code FPSTEL r is eliminated as a variable. The form of (J) as expressed in 
Eq. (17) is postulated as the correct one. To make the divergence condition be 
satisfied in two variables (0, y), it is obvious from Eq. (18) that either I; or the 
o-dependent part of (4) < should have the other sign. Therefore, Mynick and 
Hitchon [3] construct an appropriate (4) < for the numerical code 

@>< = (b, = (Q,>- @LA (20) 

to replace the physcially correct (d,,) of Eqs. (14) and (12). This approximation 
gives rise to an error of order sr, which is acceptable for the usual large-aspect-ratio 
stellarators. We have then for the two-dimensional divergence: 

a~Jx~)+xJ~&l>< =. 
ay a6 . (21) 

For untrapped particles matters are simpler. The (4) , velocity is related to the 
free-streaming parallel velocity as indicated in Eq. (10). The parallel velocity, time 
averaged over a ripple well, is [S] 

Here li equals 

(23) 
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G being the sign of u,, . 
To find j,, we observe that the radial drift velocity f can be neglected for y > 1 

in comparison with the rapid parallel motion. For y > 1 we can find 1; from its 
definition, 

(25) 

For these phase-space flows it is readily checked that the two-dimensional 
divergence condition is satisfied since 

The Jacobian (J) for y > 1 is given by half the Jacobian for trapped particles 
because the summation over (T is absent now: (J) , = 4 (.Z) <. 

The reason for including the region y > 1 in FPSTEL is because the distribution 
function for y > 1 must match the distribution function for y < 1 at the y = 1 
boundary. This is a significant improvement over the assumption that f = fM for 
y > 1, typically made in the older literature. 

The driving term (i) ?fM/dr is written in terms of a scale length, L,, defined by 

(27) 

The choice of L, represents the radial profile; in Refs. [3, 41 L, = a, where a is the 
minor radius. 

The ba form of the Lorentz collision operator, C,(f), in E (or K) and ZA 
variables is [3] 

(28) 

in which I is the bounce-action integral mentioned above. (For non-ripple-trapped 
particles I is a time average over a helical well, as usual; as for the Jacobian 
I, = Z,/2. The total I,,, for toroidally blocked particles is the sum of the Z values 
over each ripple well. Z itself is not a constant of the motion for non-ripple-trapped 
particles.) Using the well-known fact that [3] 

az 
AA’(y) L,, 

‘“=‘!EP fi 
(29) 
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<CL((f>)> t m erms of E (or K) and y variables is 

(30) 

Here v,, = v~/~E~, vD = v,/2, and L, is the length of a helical ripple measured along 
a field line. This expression will be retrieved as a simplified form, appropriate for 
low y values, from the more general expression which we shall derive in the next 
section. 

The phase-space flows p and (0) computed above can be represented in the 
0 - y plane [3]. Three kinds of orbits can be distinguished. 

The first class of particles are passing particles. They never hit the y = 1 
boundary and consequently cannot become entrapped collisionlessly. These particles 
circulate in the positive or negative 8 direction, according to their direction of flow 
along the field line. 

The second category of particles is ripple trapped with a low enough y value to 
avoid collisionless detrapping. These particles’ helical bananas precess poloidally 
due to the E x B drift. For a positive (negative) electric field, they move in the 
positive (negative) 8 direction. In contrast to the group of passing particles, whose 
9 motion is bidirectional (in accordance with their thermal motion), ripple-trapped 
particles, in the ba formulation, flow unidirectionally in 8. 

The set of particles with intermediate y values are called transiting particles. Part 
of the time, they are known as toroidally blocked particles (as long as they have 
y > 1). When they reach the y = 1 boundary, they usually reflect, but have a small 
chance (N 1%) to become entrapped in a helical ripple well. 

Bounce averaging over a helical ripple eliminates all information concerning the 
ripple phase q. As a result, detailed knowledge of the position where a particle can 
entrap collisionlessly is not available. To circumvent this complication, Mynick and 
Hitchon [3] make use of Liouville’s theorem to compute the fraction of particles 
that entraps when reaching the y = 1 boundary. Liouville’s theorem states that the 
distribution function is constant along a phase-space trajectory in the absence of 
collisions. Therefore, the trapping probability can be determined by matching the 
y fluxes on neighboring mesh points on either side of the y = 1 boundary when 
<f,.> = (.fz>: 

<J) ice, 1 -dYP) 
pft = (J) j(8, 1 + dy/2)‘ (31) 

The subscripts f and t stand for forward and trapped, respectively. Forward par- 
ticles are those that have a finite probability of becoming entrapped when hitting 
the y = 1 boundary. (Backward particles are those that must reflect at y = 1. After 
reflecting, they again become forward particles.) ( fr) and (f,) are the distribution 
functions for forward and trapped particles, respectively; they have been canceled 
in Eq. (31) because in the collisionless case (and in the absence of the driving term) 
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they are equal to each other, evaluated at y = 1~ and J? = 1 +, respectively. dy is the 
mesh spacing. 

A detailed explanation of the connection between Liouville’s theorem and the 
trapping probability has been given in Ref. [3]. The trapping probability was 
generalized for cases where E,, is 13 dependent in Ref. [4]. 

It has been pointed out [3] that the splitting of (f,) into (fb) and (f,) at the 
entrapping side in 8, and the recombination of (fb ) and (f, ) into (f, ) for 
opposite values of 8, in combination with the approximate expressions used for the 
phase-space velocities leads to a physical inconsistency. 

To avoid it, the authors of Ref. [3] have assumed that the backwards steady- 
state solution is artificially reduced by a fraction equal to the trapping probability: 

The artificial suppression of (f,,) by a few percent gives rise to an aesthetically 
regrettable deformation of the contour plots for (f), but it does not influence the 
value for the radial flux. This is avoided in the present work. 

To end this section on the code FPSTEL [3,4], we say a few words about the 
numerical method used. A two-dimensional (0, y) mesh is constructed to cover the 
range 8 = 0 to B = 2n and y = 0 to y = y,,,, where y,,, N 3. The mesh spacings 
typically used range from dy N 0.05 to 0.1 and d0 w 27c/20 to 27r/lO, the coarser 
mesh being sufficient for the higher collision-frequency regimes. The kinetic equa- 
tion for (f) is solved by relaxation in a finite differencing scheme; the code is run 
until a(fi )/at is negligible. The finite differencing itself is a hybrid between an 
explicit scheme and an implicit one, using intermediate iterations within the same 
time step. The stability of the explicit scheme is improved, as the propagation of 
information is akin to that in an implicit scheme. 

The setup of the numerical scheme in this way allows the description of the time 
evolution of (f, ), e.g., due to heating of the plasma or after pellet injection. If only 
the time-independent solution is of interest, an implicit scheme is likely to be more 
economical from a computational standpoint. No matter how the time integration 
is performed, it remains crucial, however, to have the divergence condition, Eq. (16), 
satisfied, because only then is the kinetic equation convertible into conservation 
form. 

IV. PHYSICS ISSUES INCORPORATED IN FLOCS 

a. Introduction 

The distinction between this work and that of Mynick and Hitchon [3,4] resides 
mainly in the fact that we wish to obtain a distribution function which allows 
meaningful computation of the parallel plasma currents. This requires that we 
consider both ions and electrons simultaneously for all velocity-space pitch angles 
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and over the full energy range. In addition, the distribution function must contain 
sufficient information about variations along a field line, as suggested by the 
relationship ((J,,B)) a ((B .V .lT)) = ((... 8flal)). We also have the possibility to 
check the importance of momentum-restoring terms in the collision operator. 

A formalism based on “bounce averaging” over the helical-ripple wells in B is 
adequate for our purposes. The (fi ) we compute ignores certain details of the 
helical ripples, but contains the “tokamak-like” variation along the field line. Our 
(fi) does include crucial stellarator-ripple features, in that the collisionless and 
collisional trapping and detrapping into and out of the helical-ripple wells are 
properly described. Hence, the drag exerted by trapped particles on toroidally- 
blocked particles (i.e., particles blocked in the tokamak-like trough) and indirectly 
on passing particles is incorporated. 

A ba scheme is generally considered adequate for the computation of the radial 
fluxes. The exact position of a particle is not important for this purpose, but only 
its average position or, said differently, the position of the center of the small helical 
banana. These qualitative statements can be substantiated more rigorously from the 
definition for the radial flux, r a j if,, since we shall shortly show that the 
averaged radial-drift velocity, (i), and its non-averaged remainder, i - (i), are of 
the same order of magnitude, while y1 < (fi ). The validity of this last relationship 
has been shown in Ref. [25]. 

Careful consideration of this issue is necessary if the parallel currents are of con- 
cern. As we mentioned above, the bs current 
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TABLE I 

Major radius 20 m 
Minor radius 2m 
Mean radius of magnetic surface studied lm 
E,at 1 m 0.05 
Magnetic field on axis 4T 
Multipolarity I 2 
Field periods m 12 
chat 1 m 0.063 
tatlm 1.47 
natlm 2.0x 10ZO,-~ 
Tat lm 12 keV 
K, = -ad/n 2.25 
c(== -aT’/T 0.01 

The code FLOCS solves the same formal ba drift-kinetic equations for (,f,) as 
those given in Eqs. (7) and (8). However, the phase-space velocities and the 
collision operator appearing in the y > 1 equation, Eq. (X), are generalized. 

b. Generaiized Physical Quantities in a Bounce-Averaged Scheme 

The code FPSTEL [3,4] focusses on ripple-trapped particles and thus on low y 
values. The assumption K N pB, is legitimate for that purpose. 

In the present work, we also compute the parallel current, which implies that we 
must consider all of velocity space (0 6 v,, < u) and not only low y values ( y + cc 
for z),, + v). At first sight it might seem that y is not the best pitch-angle variable 
to describe toroidally blocked and passing particles, for which it is very large (even 
running off to infinity for particles with II,, N v). On the other hand, y is convenient 
to describe ripple-trapped particles and their detrapping and trapping dynamics. 
Since the bs current originates from the interaction of ripple-trapped particles with 
the blocked and passing population, it is important to treat the transitional region 
t - bi- p accurately. Therefore, we opt for y as a pitch-angle variable and circum- 
vent the drawback of large y values via a multi-mesh numerical method, as 
described below. 

For large y values, ,U is not independent of y; the assumption p = K/B, must be 
dropped. p as a function of y, obtained from inverting Eq. (3), is 

K 
p=BB0(2Ehy+1 -&,COSO-&Eh)’ (33) 

For .sh N 0.05-0.1, the y dependence makes itself very noticeable from y - 5-10 on. 
For much higher y values, p varies like the reciprocal of y, 

K 
p = BO(2ELY)’ 

y very large. 
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Because E, and E,, are small compared to 1 it is tempting to ignore the E, cos 0 and 
E,, terms in the denominator of Eq. (33), but the t9 dependence is required to have 
the phase-space divergence property V. v = 0 satisfied. The entire expression for p, 
Eq. (33) must be used; Eq. (34) can only be employed for scaling purposes. 

Although we shall use Eq. (33) for y values larger than unity, for ripple-trapped 
particles, we use p N K/B,,. Matching of the quantities at the y = 1 boundary is 
incorporated in the trapping probability. 

In this section we shall obtain general expressions, valid for all y values, for the 
time-averaged quantities present in the kinetic equation. Successively, we shall con- 
sider the Jacobian, the radial-drift velocity, the phase-space flows, and the collision 
operator. 

b.1. The Jacobian. In terms of the variables (r, 0, E, p), the Jacobian is read 
off from the phase-space volume element: d3R d3u = Rr(2x/m~) C, B/ju,,l. The 
helical average of (u,, 1-l is given by the inverse of Eq. (22). The ba Jacobian in 
(r, 8, E, p) variables thus is 

=;rRs B,2A’ 
ma 

To convert (J,) to (J,) we need ~Yp/Llay, computed from Eq. (33): 

(36) 

This result leads to a Jacobian, (J,, ) = (J, ) Idp/ayl, given by 

(J,), = ?!!$ $I2 $!] ($/‘A’) = ?$ E;/2 $!? (pB,)i/2A’. (37) 
0 0 

The y and 8 dependences are isolated in the p312A’ factor. From the second expres- 
sion, it is clear that the Mynick-Hitchon Jacobian, Eq. (17) is retrieved for 
pB, N K. 

b.2. The radial-drif velocity. The grad-B and the curvature drifts of the 
guiding center are represented by vs. For low /? plasmas, (b. V)b = K N (V, B)/B. 
Hence 

(38) 

The magnetic field can be written approximately as B = B, + B, 2: - B,f + BP& in 
flux coordinates. From Eq. (1 ), (VB)/B N (VB)/B, is found to be 

VB cos 8 1 
^ 

-N -r^ 
B- 7 + ; ch cos ‘1 

> 
+ f (&, sin 8 + l&h sin q) + [(m&h sin a), (39) 

0 
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where we have set RN R,. With Bz B,, we have that h- [++e,t? (in flux 
coordinates). 

We concentrate on the radial component of vB. For the type of machine we 
consider, t- 1 so that ts, is small. Therefore, B N -[ so that we obtain 

iSV,.iE 
K+m,vf,/2 

@Or 
(c, sin 8 + 1~~ sin q). (40) 

The average over a ripple well eliminates the sin r~ term. Straightforward computa- 
tion shows that 

Z 
<m,vf, > =- dZ/aEl,' (41) 

in which Z is the bounce-action integral, and the denominator is the bounce time 
or transit time. This leads to 

<i)=-$--[K+2az~E, ]Eisine. 
0 P 

From this expression it is clear that the non-ba radial drift velocity, +- (i), is of 
the same order as (i), a claim we made above concerning the scaling arguments. 

The bounce action Z was computed in Ref. [3]: 

Z= m,tiL,A( y), (43) 

with zi given in Eq. (23). Upon combining this expression for Z with that for rb, 
given in Eq. (29), we obtain the form for (i) valid for all y values: 

w=-$-[ 1 + $ sh 9 E, sin 8. 
0 1 (44) 

For low y values, the second term is negligible, and the Mynick-Hitchon [3,4] 
form for (i), Eqs. (ll), (12), is recovered. For large y values, on the other hand, 
A/A’ - y and ,uB,/K- 1/(2sh y), implying that both terms in Eq. (44) are of the 
same order. 

Since CL, Eq. (33), is cos 0 dependent, the 8 dependence of (i) is somewhat more 
complicated than for FPSTEL [3, 43. Fortunately, Eq. (44) is still an odd function 
of 0 so that its integral over 2n vanishes. As a result, the driving term (f)fh 
averages to zero over 27r, as needed for particle conservation. 

b.3. The phase-space jlow velocities. The phase-space flow velocities, (a), 
and 9,, are still given by Eqs. (24) and (25), respectively, with li defined in 
Eq. (23), but with p now given by Eq. (33). With Eq. (37), we now show that 
a( (J) (6) , )/&I and a( (J) I;, )/CJy no longer vanish. 
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The expressions for (4) and j are written out for convenience: 

(45b) 

From Eq. (37), (J>, z Cp3’*A’, with C the constant factor within the square 
bracket. Both (J) (f?) , and (.I) j, are proportional to p*. 

Straightfoward differentiation (with R N R,) results in 

(46) 

so that the divergence condition is indeed satisfied. 
Although the divergence property is exactly satisfied analytically, matters are 

more complicated for the numerical derivatives because of the finite mesh spacings 
dy and de. As we shall explain in a later section, the numerical expressions for (8) 
and j used in the code differ slightly from Eq. (45) in order to guarantee exactly 
that D, ((J) (4,) , ) + DY( (J) j,, ) = 0. Here D, and D., are the finite difference 
equivalents of the derivatives. 

b.4. The collision operator. We first concentrate on a generalized form for 
the Lorentz operator (C,((f))), expressed in the y variable. The momentum- 
restoring terms are considered at the end of the section. 

Application of the chain rule in combination with the reciprocal of Eq. (36) and 
a form for aZ/aEl, = (1/2~~p,,)(A’/A), derived from Eqs. (29), (43), and (23), to the 
averaged Lorentz operator, Eq. (28), gives 

(47) 

From Eqs. (43) and (23), Z/(A 4) is independent of y, hence 

(48) 

For low y values, ,U N K/B,, and the operator reduces to the form used in FPSTEL 
[3,4], Eq. (30). For y% 1, we find that both terms in a/ay(Ap-1/2) = 
Ap”“2[A’/A + &,,pB,JK] contribute equally, since A’/A - E~~B,IK- l/y. 

To ensure particle conservation, the kinetic equation and also the Lorentz part 
of the collision operator must be written in conservation form, i.e., as a divergence. 
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To do so with Eq. (48), we isolate the p3j2A’ factor in (J), Eq. (37), within the first 
a/ay operator, 

(49) 

where vh = vD/(2sh) = v1 (u)/(~E~). For v1 (v), the formulae of Ref. [9] were used. 
The momentum-restoring terms in the collision operator are of the form [26, 51 

uU1 restoring term-u,, uUI (0) (5Oa) 

rhU restoring term - u,, rbu; (5Ob) 

G(U) and rba are a,, moments of f over pitch angle and ail of velocity space, 
respectively. 

For ripple-trapped particles, the u,r and rba terms vanish. After the integrations, 
u,r(u) is a speed-dependent function and rba is merely a number. Both are 
insensitive to the sign of u,, . Hence, since (u,, ) = 0 for ripple-trapped particles, 
the ba of the momentum-restoring terms vanishes identically. 

Therefore, the Lorentz part alone is momentum conserving in the ba formalism, 
for ripple-trapped particles. Even our approximate ba Lorentz operator, 
(C,( (f))), conserves parallel momentum exactly, since it is independent of 
sign(u,, ) for trapped particles. The u,, and rba restoring terms for blocked and 
passing particles are computed in our approach as 

(~4,~ restoring term) - (u,,) J” dQ(v,,)(f~) (51a) 

(rba restoring term) - (u,,) J d3u(u,,)(ff). (51b) 

Here dQ is the differential solid angle in velocity space: dsZ = d3u/(u2 du) = 27t du,,/u. 
With regard to particle conservation, these restoring terms are proportional to 

cr = sign(u,,); the integrals are independent of c, because the integration over u,, has 
been performed. These terms appear with the opposite sign in the equations for 
the forward and backward distribution functions. Integration over all of velocity 
space of these momentum-restoring terms gives zero; they are thus momentum 
conserving. 

V. NUMERICAL IMPLEMENTATION OF THE FLOCS CODE 

To numerically solve the kinetic equations using the generalized phase-space 
flows and collision operator, discussed in the previous section, there are some 
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crucial issues that ought to be examined carefully. First, as alluded to above, the 
divergence condition must be satisfied exactly numerically. Second, an economical 
code must resort to a multi-mesh method in the variable y. This in turn requires 
careful consideration of the divergence condition at the mesh transitions. Finally, 
we propose a cure for the artificial jump in the backwards distribution function 
(fb) obtained with FPSTEL [3,4]. For this purpose, the boundary conditions at 
y = 1 are revisited. 

In FLOCS, the same explicit numerical scheme as in FPSTEL has been adopted. 
This was done in part for pragmatic reasons, because FPSTEL is an established 
code, which was the starting point for our work. Furthermore, the explicit time- 
advancing scheme permits the study of the time evolution of the plasma. For time- 
independent problems, an implicit scheme could be used as well, in which the 
coupling between the ion and electron species (via the momentum-restoring terms) 
is taken care of iteratively. It should be noted, however, that because of the still 
applicable divergence condition, V . v 3 0, the set up of the meshes, as well as their 
overlap, and the “in principle” numerical form of the equations and boundary 
conditions remains effectively unchanged. 

In the lirst subsection, a, the divergence question will be addressed. Stability and 
the multi-mesh method are treated in subsections b and c, respectively. We end this 
section in subsection d by considering the y = 1 boundary. 

a. The Numerical Divergence Condition 

Satisfying the divergence condition for y > 1, a/#( (J) (4) , ) + a/ay( (J) 9, ) 
= 0, does not automatically guarantee that its finite-differenced equivalent vanishes 
as well, because of the finite mesh spacings dy and d0. To resolve this issue, 
appropriate new numerical flows, (I!?,,), and j,, , are derived, which approach the 
analytic forms (6) , and p, in the limit A& Ay --) 0. 

To find these new numerical flows, we first rewrite the analytic divergence condi- 
tion in terms of what we shall refer to as (phase-space) “fluxes,” ‘y^t = (J)( 4) , 
and y^‘, 3 (J)j,: 

(52) 

(These 9’s are in fact “fluxes” for a distribution function of unity.) Since 9”, and 9: 
have a two-dimensional divergence of zero, they must be derivable from a streaming 
function A. We have 

y”, = aAlay, (53a) 
'y^-; = -anlae. (53b) 

A is obtained from integrating Eqs. (53). Combining the constant factors in 
(J)>, Eq. (37), and in (e), , Eq. (45a), into one symbol c, the differential 
equations for A become 
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Integration of the lirst equation with respect to y gives 

A=-c y-$+w (55) 
h 0 

where we used Eq. (33). If we now take the 9 derivative of Eq. (55) and equate it 
to Eq. (54b) we can determine h: all terms except that involving h cancel, and we 
find 

ah 
s=O*h=const. 

Therefore, h is irrelevant for the stream function A, which is 

Before writing the explicit expressions for (6, ) , and j, , we introduce a notation 
for the mesh points. The index specification of a y mesh point is denoted by iy; a 
8 mesh point is referred to as ip (“p” for poloidal angle). 

The numerical flows (0,) , and j,, > are to be found from the finite-difference 
analog of Eq. (53): 

1 
j,, E -- 

(J) D’A’ 

Performing this numerical derivative from Eq. (57), we obtain 

1 K 
(Q,>,(iy, iPI= -(J(iy, @)) &m Miy + 1, ~PJ - P(~Y - 1, ipI1 (59a) 

jn, (04 ip) = 
1 K 

(J(iy, ip)) ?%m 
Caky, ip+ I)-Aiy, ip- 111. (59b) 

As dy -+ 0 and de + 0, these reduce to the analytic forms, Eqs. (45). 
If we set E = cK/(2s,B,), we can write for the numerical derivatives of YE, and 

; .b’ i n> . 
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(604 

D.v(<J)9fz>)i~v,ip=& [p(iy + 1, ip + 1) - ~(iy - 1, ip + 1) 

-p(iy+ 1, ip- l)+/L(iy- 1, ip- l)]. (6Ob) 

These sum to zero, so the numerical divergence condition is satisfied exactly: 

DB(y^:>)+D.“(9,>ko. (61) 

b. Numerical-Stability Analysis 

Stability of an explicit numerical scheme requires that the numerical propagation 
speed V,,,, - Ax/At, in which Ax is a mesh spacing in the x direction, must be 
greater than the speed at which the physical process travels across the mesh. 

We have two kinds of physical “flow” processes to consider. First there are the 
phase-space flows (0) and j. These flows increase gradually with y, to reach an 
asymptotic value for y + co, when v,, = v =0(2K/m,)“*, and (8), = (+/R)v and 
j, = --~,/(2s,,)(tj), sin 6. The conditions for numerical stability over the mesh 
are 

Ay > Atlj, or At < 2 .: 
Y> 

A% > At(d), or 
A% 

At < -m-z’ 
(62b) 

These prescriptions are fairly easily satisfied for reasonable mesh sizes, A% and Ay, 
and time step At. For given mesh spacings A% and Ay, the code estimates the maxi- 
mum time step At according to Eq. (62). The actual timestep is down by a factor 
tl from that prescribed by Eq. (62). c( is a “safety factor” and its value can be chosen 
at will; presently, a value a N 3 is used. The stability conditions for phase-space 
flows are more stringent for electrons than for ions. This is because the flows of the 
former are a factor (rn,/~,)l’~ N 43 larger than for ions. 

The phase-space flows (0) and j for y < 1 are smaller than those for y > 1, and 
do not enter the stability considerations. 

The second physical flow process is a diffusive flow. For a typical diffusion 
equation with diffusion coefficient D, the stability criterion requires that 

Ax > (D At)“* or At < ( Ax)~/D. (63) 

As we shall demonstrate momentarily, these conditions force us to use a multi-mesh 
method in the y variable. 
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The Lorentz part of the collision operator was given in Eq. (48). We now 
investigate its behavior for large 
values [3], A ‘v 2 A, A’ N l/J;;, 

y values. For y & 1, we use the two asymptotic 
and take p ‘v K/(2&, B, y). The Lorentz operator 

becomes 

(64) 

The coefficient of the second derivative is the diffusion coefficient in velocity space: 

D,. z (4EhVD) y3. (65) 

To satisfy the stability criterion, Eq. (63), we must guarantee that 

At< CAYI2 1 -- 
4st,V~ Y3 

for a given mesh space dy. Alternatively, 

Ay > 2(EhVD)“2 Jzf y3!2 

for a chosen time step At. 
Adjusting the time step At to accommodate a given Ay proves to be detrimental. 

Since the kinetic equation is solved by relaxation until a( f )/at -+ 0, the total run 
time T,,, is fixed by the physical relaxation processes, i.e., T,,, - l/v,. On the other 
hand, we need a rather line mesh for ripple-trapped and toroidally-blocked particles 
up to y - 3 to describe the trapping/detrapping physics accurately. Such a high 
resolution (i.e., small Ay) combined with the ye3 variation for large y values would 
oblige us to take extremely small time steps. For an externally imposed T,,,, this 
would lead to an impactically large number of time steps. 

To reconcile the high resolution needed for low y values with the required large 
values of y necessary to compute the u,, moments of (f) sufficiently accurately, we 
have devised a multi-mesh method in y. A first mesh runs from y = 0 to y = 3, a 
second from y ‘v 3 to y rr 5, etc. From one mesh to the next, the mesh spacing is 
doubled. The details of this multi-mesh approach are deferred to the next section; 
here we concentrate on justifying why such a method works. 

Because of the y3 coefficient, the collision operator, Eq. (64b), rapidly becomes 
dominant in the kinetic equation for large y values. It assumes the responsibility for 
balancing the driving term (i)fh (see Eq. (8)): 

(68) 
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Two integrations lead to 

143 

(69) 

where c, and c2 are integration constants. A physical solution for (f) must be 
finite for y -+ co or, equivalently, u,, -+ v. (f( y -+ co)) describes very passing par- 
ticles. Consequently, c1 must be chosen equal to zero. Hence, we conclude that 

(70) 

This equation states that (f) levels off to a constant value, c2, for y -+ co. It also 
indicates that the change in (f) with y, a(f)/ay, is quite small for large y values. 
This observation permits us to use a coarse mesh for large y. 

A next question to be answered is, how large are the y values that we have to 
consider in practice? As will be recalled, we have to consider large y’s to be able 
to compute the v,, moments of (f), which involve integration over all of velocity 
space. For each of these, the y integration runs (in principle) from y = 1 to y + co: 

jd3v(“,,)(f)=~jo~dKj,Z~Y~l<i:,,)l <f>. 
rs 

(71) 

We recall that (J) cc P’/~A’ and 1 (v,, ) 1 cc ,u11/2/A’. Therefore, as far as the y 
integration is concerned, 

(72) 

Here we replaced p by (K/B,)( 1 +2&h y)- ‘, dropping the small E, w&h terms in 
Eq. (33). Since for large y values, (f) can roughly be considered as a constant, 
according to Eq. (70), it is easily demonstrated from Eq. (72) that replacing the 
upper limit y -+ GO by y N y,,, N 100 leads to errors of 5 and 10% for &h values of 
10 and 5 %, respectively. Since = 10 % is the overall accuracy of this computation, 
we shall take ymax N 100. 

Our strategy should be clear. We wish to keep y as a pitch-angle variable because 
y is very convenient to describe ripple-trapped and toroidally-blocked particles. 
Moreover, it is desirable to keep the mesh linear at low y values to see more readily 
the y dependence of (f). The drawback of having to deal with large y values when 
the integrals are performed is circumvented by a multi-mesh method. We start with 
a tine mesh for low y values and introduce gradually coarser meshes for larger y 
values. The code FLOCS is capable of handling any number of meshes desired. For 
the results to be reported in the next section, we used seven interlinked meshes. 

As an alternative to a multi-mesh approach one might consider using log y or 
l/y or even p as a variable for large y values. Although p is an appropriate variable 

581/95/l-10 
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for passing particles, it is inconvenient to use it for ripple-trapped particles. Using 
y for low y values and ~1 for large ones is a difficult task in that matching a linear 
,V mesh onto a ,u mesh is rather complicated. As far as the log y and l/y options 
are concerned, it is not clear at what y value a transition from y to the alternative 
should be considered. It is our intuitive feeling that a linear y mesh should be used 
up to y - 5-10. However, at such y values one is already forced to use a dy spacing 
which is too coarse for the y - 1 region, in order to meet reasonable CPU con- 
siderations. Hence, a multi-mesh approach seems to be the most clear-cut way to 
resolve this issue. Once the mechanics for the multi-mesh method were incorporated 
in FLOCS, it proved to be a very flexible tool (depending on where the mesh 
transitions are chosen, FLOCS can resolve certain regions of phase space better 
than others; because of the free choice of the mesh transitions, it seems to be more 
flexible than a prescribed functional dependence of the mesh spacing). 

We arrived at a value y,,, - 100 by considering the o,, moment of (f) in 
Eq. (72). FLOCS also computes the radial fluxes, which are proportional to a 
velocity-space integral j d3v(i.)fh. H owever, for the radial flux, only the low y 
values contribute significantly. The bulk of the transport is due to ripple-trapped 
particles (y < l), a small fraction is contributed by toroidally-blocked particles 
( y < ytp), and a generally negligible amount originates with passing particles. For 
the radial flux a maximum y value, ymBX - 3, is sufficient for the E,, and E, values 
we consider. 

For each mesh point of all submeshes, the maximum timestep At is evaluated and 
the smallest of these is used by the code (again after reduction by a “safety factor” 
‘x-3). 

It is to be expected that in the high collisionality regime, the maximum At will 
be obtained from the diffusive-flow constraint, Eq. (66). For low v regimes, the 
phase-space flow condition, Eq. (62), plays a significant role, especially at the mesh 
points where Ay is small. Recall that the A0 spacing is constant (and small) 
everywhere. For low collision frequencies the timestep limitation could therefore be 
caused by the e-stability condition, Eq. (62b). 

c. Structure oj‘the (6, y) Mesh 

The grid used to cover the (0, y) plane, --T( < 0 < n and 0 d y < 100, consists of 
a single evenly spaced 6 mesh and N different interiinked y meshes. From a mesh 
covering low y values to the next one representing higher y values, the Ay mesh 
spacing is doubled. The results presented in the next section are obtained with mesh 
spacings A0 - 271/2&27c/lO and (AY)~,,,, mesh - 0.05-0.1. We used seven interlinked 
meshes with respective maximum y values 3, 5, 8, 16, 30, 50, 90. 

In the middle of each mesh, the finite differencing is done as usual, taking into 
account the proper mesh spacings for that mesh. Caution is needed at the connec- 
tion of two meshes, however. In order to propagate information up and down the 
y meshes, quantities at one end of one mesh must be expressed in terms of those 
of the neighboring mesh, because the ubiquitous divergence condition must be 
satisfied. 
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We first consider the bottom y mesh ranging from y = 0 to about y = 3. In Fig. 4, 
we show its position in relation to y = 1 as well as the top of the mesh. We use the 
convention (as in the original code FPSTEL) that the iy index increases with 
decreasing y value. Hence, the dy in the code is a negative number, represented by 
dy, (the index n refering to numerical). (For the poloidal angle both 13 and ip 
increase in the same direction.) The mesh is positioned symmetrically about the 
y = 1 boundary: the first mesh point above y = 1 has a y value y = 1 + Jdy,(/2; the 
first point below y = 1 is y = 1 - ldyn(/2. 

The labeling of the mesh points around y = 1 is self-explanatory. Point iyeql is 
the iy value (immediately above) where y equals 1; iylpl = iyeql + 1 and iylml = 
iyeql - 1. In what follows, the extra (1) between parentheses specifies that it 
concerns the first mesh. 

Near the top of the mesh we have the meshpoint &u(l) indicating the “upper” 
point of the first mesh. iyuf( 1) is the so-called “final upper” point. The y value 
yupper(1) is the top y value for the first mesh. For the results in the next section, 
yupper( 1) = 3. 

In order to set the reference for the finite differencing near mesh transitions (to 
be discussed momentarily), we first consider the differencing equation for point 

yupper (1) 

f< 
I:::(,," 

i 
iyu(l)+l 

iy 1 i 

y=1+31Ay"li2y 

y-l +IAy&‘2+ 

y=1-lAynfi2N 

iyeql(llysl 
IYlPl(1) 
iylpl(l)+l 

FIG. 4. The first y mesh, centered about y= 1 
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(iy, ip) of Fig. 4. We shall concentrate on the flow terms of the kinetic equation in 
conservation form [ 31: 

which becomes, after finite differencing, 

<Af(iY, $1) = - Iv^~,(iy,ip+l)(f(iy,ip+l))-y^jl,(jy,ip-l)(f(iy,ip-l))l 
248 

+ IX, (tv + 1, @Kf(jy + 1, @I> - 7% (iv - 1, @Kf(tv - 1, @)>I 
2Ay,(l) > 

x {At/(J(iy, ip))) + remainder. (74) 

Here remainder stands for the sum of the (negative) collision operator and the 
driving term (multiplied by At). The point (iy, ip) is represented by the cross 
“ x ” in Fig. 4. The 8 differencing is done between the circles, and the y differencing 
is performed on the squares. 

In Fig. 5 we show the interlink between two meshes. The solid lines belong to the 
“lower” mesh covering lower y values. The dashed lines describe higher y values. 
Since the first mesh for untrapped particles (see Fig. 4) runs over the indices iyuf( 1) 
to iyeql( 1 ), we have labeled all higher-order meshes analogously: they run from 

b I i _._______-.__ _ ___-______-__ *___ 
Ay, (imesh+l)cO 

f”” 
_______________.___________ yupper (imesh) 

_.___-____.____________________ 
/ 

iylml 

iylml 

iyeql 

Y 

I 

(imesh + 1) - 

(imesh + 1) 

(imesh + 1) 
i i u (imesh) + 1 

-----.iyu(imesh)+2 

Y 
-Ayn (imesh) < 0 

I B 
8 

t 

FIG. 5. Transition between y meshes, imesh (solid), and imesh+ 1 (dashed). 
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iyuf(imesh) to iyeql(imesh), where imesh is an additional index to label the “order” 
of the mesh. On the right-hand side of Fig. 5, the indices label the top of the mesh 
imesh, represented by solid lines. On the left, the indices refer to the bottom of the 
dashed mesh, imesh + 1. 

Two neighboring meshes must overlap to a certain extent, as shown in Fig. 5. 
This is required so as to be able to propagate information from one mesh to the 
other, and to have the divergence condition satisfied exactly at those transitions. 
(The complication arises from the different mesh spacings at the transition.) 

To have information travel downward, the y differencing at the top of the 
mesh at point iyuf(imesh) is obtained from the two points of the dashed mesh, 
represented by the circled crosses in Fig. 5 and labeled iylml(imesh + 1) and 
iylml(imesh + 1) - 1. The 8 differencing is as usual. Instead of Eq. (74) we have 
thus for the y differencing at point (iyuf(imesh), ip) 

= - ([ft, (iyuf(imesh), ip + l)(f(iyuf(imesh), ip + 1)) 

- {f,“, (iyuf(imesh), ip- l)(f(iyuf(imesh), ip- 1))]/2d0 

+ [y^i’, (iylml(imesh + l), ip)(f(iylml(imesh+ I), ip)) 

-~~,(iylml(imesh+1)-1,ip)(f(iylml(imesh+1)-1,ip))]~dy,(imesh+1)} 

x {d t/( J( iyuf( imesh), ip) } + remainder. (75) 

Thus as is clear from the equation, the rate of change of (f) at iyuf(imesh) is 
determined by differencing the (near) bottom points of the higher-order mesh, 
imesh + 1. 

As will be recalled, the 8 “fluxes” J?,“, , are obtained from the y differencing of the 
stream function /i (effectively p). At interior points of a mesh the y differencing is 
done using neighboring mesh points of the same mesh. However, in order to satisfy 
the divergence condition at the top of the mesh, the 0 “flux” vf, (iyuf(imesh)) must 
be computed from differencing the stream function at points of mesh (imesh + 1). 
We have now in comparison to Eq. (59a) 

- 4W’bJ,) 
=dy,(imesh+ 1) 

[p(iylml(imesh+ l), ip)-p(iylml(imesh+ l)- 1, ip)]. 

(76) 

Equation (76) cannot be utilized for the very last mesh, however. How the 
boundary condition at the point iyuf(Nmesh) is applied will be discussed in the 
next section. 

To make information move upward in y, an analogous “mixed” differencing is 
used at the bottom of a mesh. The y differencing at the bottom point of mesh 
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(imesh + l), namely at iyeql(imesh + l), is obtained from the points iyu(imesh) + 4 
and iyu(imesh), represented by the triangles in Fig. 5. The mesh spacing appearing 
in the denominator is 4dy,(imesh). The 0 differencing is as usual, but the 8 “flux”, 
fz, (iyeql(imesh + l), ip), is constructed from differencing at the “triangle mesh 
points” of mesh imesh. All of the above holds for all iyeql’s except iyeql(1 ), since 
there the boundary conditions at y = 1 apply, which will be treated in the next 
section. 

d. Boundary Conditions at y = 1 and at the Top of the Mesh 

Because in our present work the (0) , and d, flows are dependent on 8, we 
must pay special attention to the boundary conditions at y = 1 + and at the top of 
the mesh, at iyuf(Nmesh), where Nmesh is the last y mesh. As part of considering 
the boundary condition at y = 1, we shall propose a remedy to erase the artificial 
jump in ( fh) imposed on FPSTEL [3,4]. Also, we shall adjust the 6’ flows for 
y = 1~ to make sure that the boundary condition is better satisfied than was the 
case in FPSTEL. For completeness, we mention that the boundary condition at the 
very bottom of the mesh, at y = 0, is left unchanged, compared to Refs. [3,4]. 

At the very last y mesh point, iy = iyuf(Nmesh), there is no next iy point to do 
the y differencing. Mynick and Hitchon [ 1,2] resolved this difficulty by making 
particles flowing out of the top mesh at (0, y,,,) immediately reappear at the sym- 
metric point (- 8, y,,.). For yUf large enough, little physics is lost. Because our $ 
“fluxes” are 8 and y dependent, matters are a bit more subtle than in FPSTEL 
[3,4]. Instead of Eq. (75) a different equation is needed: rather than using a point 
(iyuf(Nmesh) - 1, ip), which does not exist, the point (iyuf(Nmesh), iq) is used, 
where iq denotes the symmetric point about 0 = 0. To guarantee that the divergence 
condition is satisfied, the 0 “fluxes” must again be adjusted, since the y differencing 
is in fact now done over one mesh spacing. We observe that 

p(iy, ip+ l)-~(iy, ip- l)= -[p(iy, iq+ l)--p(iy, iq- l)], (77) 

since both these differences are odd in 0 (their numerator goes like sin 0 cos 0). The 
expression for jf, (iyuf(Nmesh), ip) is 

Y^z, (iyuf(Nmesh), ip) 

- c(K/% 4) 
= dy (Nmesh) Cdb4Nmesh), ip) - AbdNmesh), @)I. (78) 

II 

The equations given so far, can all be written for forward and backward moving 
particles. The general symbol ff, = (J) , (6,) , can be replaced by $y or 7: 
according to which flux is of concern, and similarly for the y “fluxes.” It is a matter 
of convention which flows are taken to be positive. If, say, the forward flow is 
positive, then according to Eq. (24) the backward flow will be negative. (In 
Eq. (55), 0 = sign(u,,) is buried in the constant c.) We shall argue momentarily that 
forward and backward fluxes should not merely be each other’s negatives, but 
should also have a slight imbalance in magnitude. 
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We now take a closer look at the region near y = 1. Near the y = 1 boundary, 
three kinds of particles are involved, trapped (t), forward (f), and backward (b). 
The FPSTEL boundary conditions (be’s) are discussed in detail in Refs. [3,4]. 

A detailed examination of the be’s used in FPSTEL [3,4] shows that they do 
not exactly satisfy the divergence condition. For the bc at point y = 1 - Ay/2 (for 
the trapped particles) the problem is easily resolved when it is recognized that it 
involves finite differencing across only one mesh spacing: A’ at that meshpoint 
should also be differenced across one mesh spacing, instead of across two as done 
usually. 

At the entrapping side at y = 1 + Ay/2, matters are a bit more subtle. For forward 
particles, we have the equation 

0 = D&d, 1 + Ay/2) 

+ [Y^f(e, 1 - Ay/2) - Y^;(O, 1 + Ay/2) - $(O, 1 + 3Ayj2)]/2Ay. (79) 

In FPSTEL [3] both “fluxes” f,/ and $i are independent ofy, and are each other’s 
negative. Consequently, the last two terms in Eq. (79) cancel. Also, j$ is independent 
of 0, Eq. (26), setting the Do term in Eq. (79) equal to zero. Therefore, we must 
conclude that fY(0, 1 - Ay/2) E pfi’y^;(B, 1 + Ay/2) survives, leaving Eq. (79) with a 
non-vanishing right-hand side. (The trapping probability pf, was discussed above in 
Eq. (31)) 

Investigation of the bc for backward-moving particles, leads to the same 
conclusion. 

This failure to satisfy the divergence condition is because of the original incon- 
sistency in FPSTEL [3] which forced the authors to lower the backwards distribu- 
tion function artificially. The be’s at y = 1 + Ay/2 are not satisfied because the 
definition of the trapping probability P.~,, Eq. (31), . IS incompatible with the fact that 
the y fluxes y^g and y; are merely each other’s negatives. Setting pi = -7; does not 
allow a fraction of the forward flux to become entrapped. 

We conjecture that the forward flux should be a factor (1 - prt)-’ larger than the 
backward flux. Making the forward y flux larger than the backward y flux seems 
to be connected with the neglect of the poloidal cross-field drifts for untrapped par- 
ticles. It is not clear, however, to which factor in fY = (J) ,$ it should be attributed. 

Intuitively, we would zrgue that this (1 - pri) factor adjustment should be 
ascribed to the Jacobian, because there is slightly less phase space available to 
backward particles than to forward moving particles, since the latter have access to 
a IBI window which can permit them to become trapped. The reason why this is 
not reflected in the averaged Jacobian is because we always compute the time 
averages as df/v,, averages, neglecting the small cross-field drifts, whereas it is 
precisely the deviation from field lines due to these drifts that makes entrapping 
possible. 

On the other hand, one might claim that the cross-field poloidal drifts should 
have been included in the (0) , flows in addition to the parallel free-streaming 
part, which in turn determine the ?;, flows. This observation was made in Ref. [3]. 
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Although this is at first sight a logical explanation, it only works for one sign of the 
radial electric field (whose E x B poloidal flow adds to the poloidal projection of the 
free streaming of the forward particles). Furthermore, experience with the code has 
shown us that the precise value of the (4) , flow is not crucial as long as Ijrl = 
IPhl/(l -PI,). 

The above discussion as to which factor should be responsible for the adjustment 
is somewhat academic since in the code the factors always appear combined. 

We propose that the forward flux of FPSTEL, jj/, be increased by a factor 
(1 -PJ ‘I2 over its value prescribed by Eqs. (24) and (25). The backward flux -Ji 
should be multiplied by (1 - P~)“~ and thus reduced by a small fraction. With 

and 

7; = JT; o,d ( 1 - p,?) - ‘2 @Oa) 

~g=ji;,o,d(l-pri)“’ W’b) 
it can easily be shown that both be’s for forward and backward particles at 
y = 1 + Ay/2 are satisfied exactly. The 8 fluxes, $!b, may be adjusted, but there is 
no necessity, since both a/@(?&) = 0 and a/%($,)=0, making y fluxes and 0 
fluxes decoupled with regard to the divergence condition. The proposed adjustment 
of fijlyb can also be shown to make the be’s at the detrapping side exactly satisfied. 

The p/l, appearing in Eq. (SO), is still defined in terms of the ratio of the y 
fluxes at either side of the y = 1 boundary, formally as in Eq. (31). Since the 
y flux, f;( y = 1 + ), is now a function of pr,, the expression for p,., is the solution 
of a quadratic equation. From Eqs. (3 1) and (SO), we have ( pr,),,, = 
$:‘(Y = l-)hyY= I+) = y^;.,,c1 -(P,~)“,,l”‘l~~.,d(Y = I+) = Cl -(Pf,)“cwl”2 
(P~,)~~~. Or, with bftL = x, the unknown, and (P/,),,~ - a, a constant readily 
evaluated from the ratio of the two “old” y fluxes at y = 1 + and y = l-, the 
quadratic equation to be solved is x2 + u2x - a2 = 0. Since the “old” y fluxes in 
FPSTEL are 8 independent, the evaluation of a and x at one poloidal mesh point 
suffices. 

Figure 6 shows the result of incorporating the (1 -p~~)“* factors in the y fluxes. 
Figure 6a is the contour plot of the backward distribution function obtained with 
FPSTEL. In Fig. 6b, we show the result of the y-flux adjustment. Both cases are for 
the vl/* regime. 

Further careful consideration of this issue suggests that the (1 -pf,)“’ factors 
are in fact only needed for blocked particles, i.e., those that can reach the y = 1 
boundary. This measure would, however, violate the divergence condition, since it 
would make the y flux y dependent, taking a jump near yt,, = y, (0). Since these 
corrections are small, we presume that their influence on the fluxes for y > y, is 
negligible. 

These adjustments of the flows for y > 1 discussed in the context of FPSTEL are 
also used in the code FLOCS, albeit with some minor modifications. One of the 
main differences is that in FLOCS the 6’ and y fluxes, #, and i-t, are generalized 
and each have non-zero derivatives, in contrast to Eq. (26), which holds for 
FPSTEL. 
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FIG. 6. (a) Contour plot of the backward ION distribution function in the Y”’ regime, obtained with 
FPSTEL. (b) Contour plot of the backward ION distribution function in the vJ12 regime, after the 
forward and backward flows were adjusted according to Eq. (80). 
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Amongst other things, one of the consequences is that D,j$b no longer vanishes 
in the equations above. More importantly, the divergence condition now requires 
that any adjustment that is made to one of the fluxes y^c or ffl, is compensated by 
an adequate adjustment of the other flux, yf, or y^C, respectively. 

In contract to FPSTEL, the trapping probability pf, is now slightly 8 dependent 
because of the 0 dependence of p in Fc, Eq. (59b). This complicates matters if 
we merely use adjustments (1 - pli (0))“’ in the y and 8 fluxes, in that the 8 
dependence of pr, causes the divergence condition to be violated. Therefore, we 
compromise by using the 8 averaged trapping probability P,(+ in the adjustment 
factor rather than the actual ~,~,(8). The error made in the divergence condition at 
y = 1 is of the order of the difference p/, (0) - p,(, av, which is very small. 

In the standard version of FLOGS, we adjust the y^c and $,“, fluxes similarly: 

Yi“ = y^i o,d ( 1 - Pf,, ..I ~ I’*, 

lY=%&dl - Pf,.a”)‘i2, 

9; = g old ( 1 - P/I, a.) I’* 

ffl=f&M(l - Pft,av)1’2. 

The “old” fluxes are given in Eq. (59), where forward is given by a + sign and 
backward by a - sign. 

In the FLOCS framework, the pli’s appearing in the quadratic equation are 8 
dependent: now a = a(@) is evaluated at every poloidal mesh point ip, after which 
x = x( 19) is found. Then, X = CT’ x( ip)/npol G pr,, av is taken as the average trapping 
probability and is substituted for pf, in Eq. (80), to give Eq. (81). 

In Fig. 7 we show a comparison between the two possibilities for FLOG concer- 
ning this issue. We show contour plots of the backward distribution function, (fh), 
for ions in the transition region v-VI;*. For Fig. 7a, Eqs. (81) were used. The 
divergence condition is satisfied everywhere except exactly at the y = 1 boundary 
where there is a very small imbalance. In Fig. 7b, the pfi, av in Eq. (81) has been 
replaced by ~~(0). Here the boundary condition at y = 1 is satisfied exactly, but the 
divergence condition is spoiled for the whole region y > 1. The first option seems 
to give the best results, but the difference is negligible. 

e. Structure of the Code FLOCS 

To discuss the structure of the code FLOCS it is useful to write the kinetic 
equation explicitly for a species, e.g., for untrapped ions, 

%W>> (I’))+&J)P> (fW}+(i)l; 

=;(vy+v';")(L((.t.'>)) 

+ {(vy+vy)/2-(v~+v~!q} y <Ui(U) >fL 

+ 2 cull) i/i 

v', (VJ Cr;i> + v?(r,i>)fL (82) 
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FIG. 7. (a) Contour plot of the backward ION distribution function with correction factors 
(1 - p,, av)1/2 in the phase-space flows. (b) Contour plot of the backward ION distribution function with 
correction factors (1 - ~~~(0))“~ in the phase-space flows. 
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(r,,) cc J cl’ um,v~“(~,,)(f’). Wb) 

The complete collision operator has been given in Refs. [26, 51. We repeat that 
Ci(f’) = Cii(f’,f’) + C,(fi. f’). The symbol L in Eq. (82) stands for the y 
derivative part of the Lorentz collision operator. (Recall that the momentum- 
restoring terms, Eq. (83), do not appear in the y < 1 equation). 

The finite-difference equivalent at a generic point (iy, ip) is given in Eq. (74). The 
timestep dt is chosen. The fluxes 9: = (J)(e) and y^; = (J) j and the Jacobian 
(J) are obtained from Eqs. (59) and (37) for y > 1. For y < 1, the flows listed in 
Eqs. (15), (20), (1 l)-( 13) and the Jacobian given in Eq. (17) apply. For y > 1, 
again, the (i) of the driving term is written in Eq. (44) and the Lorentz part of the 
collision operator in Eq. (49). For y < 1, the usual FPSTEL forms, Eqs. (1 1 ), (12), 
and (30), hold. 

At the upper point of a mesh, Eq. (75) instead of Eq. (74) is to be used, where 
now Eq. (76) is employed rather than Eq. (59a). The other quantities are as in the 
generic case. 

For the boundary conditions at the very top of the last mesh, the procedure is 
outlined above Eqs. (77), (78). For the boundary y = 1, the generic form, Eq. (74) 
holds, except that the term within the curly brackets is replaced by Eq. (79), in 
which one should read j(iy, ip)(f(iy, ip)), wherever a y^ appears (in other words, 
Eq. (79) was written for f- 1). 

Keep in mind that in all fluxes for y > 1, jj’~I‘, a factor [ 1 - P,,, ..] *‘j2, as 
indicated in Eq. (81), should be incorporated. The prescription for obtaining the 
pr,‘s is given below Eqs. (80) and (81). 

The electron distribution function, (f’), influences the distribution function for 
ions, (f’), via the r momentum-restoring term of the collision operator. Similarly, 
(fi) enters the equation for (f’). The r collision term represents collisional 
friction between the species. 

A second observation is that energy scattering is absent from Eq. (82). Hence, 
Eq. (82) can be solved on a given energy shell. However, to find rob, Eq. (83b), 
integrations over energy must be performed. 

The electric field appears in the code as a parameter. It enters the equation for 
y < 1 in the (4) term. First a search for the self-consistent electric field E,. must be 
undertaken: that E, for which ion and electron radial fluxes are equal. As we 
explained above, this search can be performed with a fairly low maximum y value, 
Y max N 3, allowing the total run time for one value of E, to be reduced by a factor 
rv 5. (Also, because the radial fluxes are mainly determined by the ripple-trapped 
particles, no momentum-restoring terms are used for that run.) 

The code is two-dimensional in the variables (0, y). It computes (f) = 
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(f(0, y)). To find the energy dependence, the code sequentially and iteratively 
handles different kinetic energies K,, for each species (allowing for interspecies 
interaction), all within a single run. 

Since (f”) enters the equation for (f”), the problem is solved iteratively. We 
start the code for one species, say ions. For the first iteration the r term is neglected, 
so that the coupling between species is not taken into account the first time 
through. In this first iteration, we run the code for ions for, say 10 kinetic energy 
values: e.g., K, = 0.4T to Klo = 4T. For each of these K,, the function [ (f’(B, y))] 1 
is computed and stored in an output file. After [(f’)], has been computed for the 
last kinetic energy for ions, the code switches to electrons and runs through 10 
kinetic energies for electrons, e.g., K1 =0.8T to Klo= 8T. (The reason for 
considering the electrons up to K= 8T compared to the ions, for which we take 
KG 4T, is related to the fact that the electrons are in the v-’ regime, whereas ions 
find themselves in the v-v112 regimes. A detailed scaling analysis addressing this 
issue has been undertaken in Ref. [12]). Again, for each of these K,, [ (f’(tl, y))], 
is stored in an output file for (f). At the end of the first iteration, [ (fi)], and 
[(f’)]r are available, allowing the integrals [(rii)ll, [(rie)],, [(rei)],, and 
[(r,,)], to be performed. These energy integrations are performed during cycling 
through the energies. 

With the [(r,b)]l known, we start the second iteration. We read the [ (fi)]r 
from disk and use that as the initial (f’) for the second iteration which finds the 
distribution function, [ (f’)12, in which [(r;,)], and [(r,,)] r are used. We again 
cycle through all the ion kinetic energies, compute [(f’)12, [ ( rii)12 and 
[(rj,)]2. Then we switch to electrons and use [ (r,,)ll and [(rj,)], in order to 
compute [(f’)]*. From this [(f’)]2, [(r,)12, and [(r,j)]z are computed. 

For the results presented in the next section, we used 10 iterations as described 
above. In other words, the r collision terms are neglected during 10% of the run, 
and are then iterated on. 

In the code, (f) is normalized to 1, i.e., f,, = 1, except when the energy integrals 
are performed, when obviously the e- KlT dependence is taken into account. At the 
start of the run, (f) is set to 1 (thus (fl ) = 0). The driving term (i)&, produces 
a (Af ), which is then felt by the ajay and a/a0 terms and the Lorentz collision 
operator. After a time T- l/v, a(f)/& becomes negligible, signaling that a steady 
state has been reached. 

TO speed up the code, (f) is only set equal to 1 for the first kinetic energy cycled 
through (for both ions and electrons). Rather than starting with (f) = 1 for 
K= Kj, during the first iteration, we use the output [(f)] 1 from the energy 
K = K,- 1. The behavior of (f) for two neighboring energies (i.e., collision frequen- 
cies) is not too drastically different; hence we reach equilibrium quite quickly. 
Obviously, this borrowing of the computed (f) from K= K,- I to start up the (f) 
for K = K, only makes sense during the first iteration. From the second iteration on, 
we start up the run for [(f)]k,K, with the old result for that same kinetic energy 
C<f>lk- I,&’ In its present form, FLOCS uses about 1 h of CRAY CPU time for 
completing a full run, in which the starting distribution is a Maxwellian. 



1.56 D’HAESELEER, HITCHON, AND SHOHE-I 

When a ru,n has finished for a given set of plasma and device parameters, the 
result for (f) is saved in an output file. When the code is later run for a device 
with parameters which are not too different, the code can be started up using the 
(f)‘s of the old run rather than starting over from the beginning with (f) = 1. 
This saves a considerable amount of CPU time (up to 60-70 %). 

VI. RESULTS OBTAINED FROM FLOCS 

In this section we report on some results obtained with the code FLOCS. In this 
paper, we discuss the distribution function and show the (0, y) contour plots for 
ions and electrons. The determination of the self-consistent radial electric field for 
different plasma temperatures, the particle-confinement times and the radial particle 
fluxes, corresponding to these ambipolar fields, have been reported and discussed 
elsewhere [12]. Results for the bootstrap current and their physical interpretation, 
for two different ripple-amplitudes sh, have been considered in Ref. [25]. 

The device and plasma parameters investigated refer to an upscaled ATF-like 
reactor. (ATF is the Advanced Toroidal Facility located at ORNL). The 
parameters are given in Table I. 

The series of plots shown in Figs. 8-17 depicts the contours of constant (f,) 
(left) and (fh) (right) in the (0, y) plane for 06 y < 3. (For the region y < 1, 
(f,) = (fb) E (f,).) They apply to the parameters of Table I. The set of the first 
live figures, Figs. 8-12, are for ions, the remainder, Figs. 13-17, are for electrons. 
For ions, five of the 10 kinetic-energy shells are shown: K=0.4T, 1.2T, 2.OT, 2.8T, 
and 3.6T. For electrons, we also show live shells, from K = 0.8T to K = 7.2T. 

FIG. 8. Contour plot of forward (left) and backward (right) ION distribution functions for K=0.4T. 
Distribution plotted every 0.5 %. 
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FIG. 9. Contour plot of forward (left) and backward (right) ION distribution functions for K= 1.2T. 

Distribution plotted every 0.5 %. 

In these contour plots, the computed distribution functions are represented nor- 
malized to fM E 1. The solid lines are contours of constant (f ), for which (f) > 1; 
(f) < 1 is depicted by dotted curves. The range 0 < y < 3 encompasses all ripple- 
trapped particles ( y < I), all toroidally blocked particles ( y < JJ,), and some 
passing particles. Y,~ is maximal at 8=0 with value 1.79. All the pictures, from 
Fig. 8 through 17, are plotted on the same scale. The interval, 0.8 < (f) d 1.2 is 
sampled 80 times. In other words, a constant (f) contour is plotted every time 
(f) changes by 0.5 %. 
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FIG. 10. Contour plot of forward (left) and backward (right) ION distribution functions for 
K= 2.OT. Distribution plotted every 0.5%. 
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FIG. 11. Contour plot of ,jiirward (left) and backward (right) ION distribution functions for 
K= 2.8T. Distribution plotted every 0.5%. 

The driving term of the kinetic equation is (i)fh- -(J) fM/Lo, in which L, 
is the scale length. In FLOCS, the proper energy dependence of L, is taken into 
account [ 121: 

(84) 

The primes represent derivatives with respect to r. The presence of the q,@‘/T in 
L, gives rise to a substantial difference between driving terms for ions and electrons. 

FIG. 12. Contour plot of forward (left) and backwprd (right) ION distribution functions for 
K= 3.6T. Distribution plotted every 0.5%. 
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FIG. 13. Contour plot of forward (left) and backward (right) ELECTRON distribution functions for 
K= OAT. Distribution plotted every 0.5 %. 

It turns out that for the parameters used, the ambipolar electric field is negative, 
implying a positive @‘. Consequently, the driving term for electrons is much bigger 
(L, is much smaller) than the driving term for ions (which have a fairly large scale 
length). The parameters CL,? and cl= of Table I are defined as n’/n = -~,,/a and 
T’/T= -a,/a, where a is the minor radius. These parameters a, and a, can be 
chosen at will in the code to simulate different radial profiles. As shown in Table I, 
we chose a nearly flat temperature profile. This was done in part for pragmatic 
reasons, to suppress the energy dependence of L,, in order to be able to limit the 

-71 0 +II -71 0 +'TI 
e+ e-r 

FIG. 14. Contour plot of forward (left) and backward (right) ELECTRON distribution functions for 
K= 2.4T. Distribution plotted every 0.5 %. 

581/95/l-11 
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FIG. 15. Contour plot of forward (left) and backward (right) ELECTRON distribution functions for 
K = 4.0X Distribution plotted every 0.5 %. 

range of energy integrations, and hence to save CPU time. This is also justifiable 
on physical grounds since stellarators usually have fairly flat temperature profiles. 
For the parameters in Table I, the ion and electron driving terms differ by roughly 
a factor 5. 

We shall now briefly discuss these ion and electron distribution functions. First, 
we focus on the ions, Figs. 8-12. Next, the electrons, Figs. 13-17, are considered. 

The ion distribution functions show that (f) shifts smoothly from the v- ’ 
regime (low K) down to the v regime (large K) after having passed through the VI’* 
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FIG. 16. Contour plot of forward (left) and backward (right) ELECTRON distribution functions for 
K= 5.6T. Distribution plotted every 0.5 %. 
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FIG. 17. (a) Contour plot of the forward ELECTRON distribution function for K= 7.2T. Distribu- 
tion plotted every 0.5%. (b) Contour plot of the backward ELECTRON distribution function for 
K= 7.2T. Distribution plotted every 0.5%. 



162 D’HAESELEER, HITCHON, AND SHOHET 

regime. In terms of the normalized frequency of Fig. 3, the low kinetic energy, 
K = OAT, corresponds to ~$2, - 1.3, whereas the large energy, K= 4.OT, has 
v,,/Q,- 0.07. In the relatively high collision-frequency regime, v ‘, (f,,) varies as 
sin 8. By lowering the collision frequency, the solid lines ((f) < 1) move towards 
the middle of the picture, to make the 0 dependence more and more symmetric. In 
the v regime, (fi,) varies roughly as cos 8. 

The series of pictures, Figs. 8-12, shows more contours the less collisional the 
energy shell is. This is because, first, the driving term is proportional to (i) which 
in turn varies linearly with K and, second, because collisions tend to restore ,f 
towards a Maxwellian, keeping the perturbation fi fairly small in the v r regime. 

The contours for y > 1 for the relatively collisionless cases (Figs. 11, 12) resemble 
the collisionless particle trajectories. (See Refs. [3, 41.) This is because of Liouville’s 
theorem; in the absence of collisions, ,f is constant along a phase-space trajectory. 
(For more on the behavior of (f) in the v regime, see Ref. [3].) 

The electron distribution functions shown in Figs. 13-l 7 are all in the v ~ ’ regime. 
Figure 13 refers to K= O.ST, or v,,/O, - 70; Fig. 17 depicts (S) for the case 
K = 7.2T. K = 8T would correspond to v&S, - 4; v,,/Q, for electrons does not scale 
exactly as K-"' in comparison with the ions due to the energy dependence of the 
Maxwell integral # in the collision frequencies [9]. 

If we compare (f) for y < 1 with that for y > 1 in the case of electrons, we 
observe that (f) exceeds our window 0.8 < (f) < 1.2 near y = 0 in Fig. 17, 
whereas those figures and all the other electron figures hardly show any detail for 
y > 1 on this same scale. This can be understood from the kinetic equations, 
Eqs. (7) and (8). The large driving term for the electron species is relatively more 

c 

FIG. 18. Contour plot for forward (left) and backward (right) ION distribution functions of 
K= 0.4T. Distribution plotted every 0.1 %. Compare to Fig. 8. 
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important in the bounce-averaged equation for y < 1 than in the averaged equation 
for blocked particles because of the large phase-space flows (0) and j for y > 1. 
Compared to the ions, (0) and j are the same for the y < 1 equation, with the 
electrons having the biggest driving term. But for y > 1, the (8) and 9 flows for 
electrons are a factor 43 larger than for ions. 

To see some more structure for the region y > 1, we have replotted these same 
distribution functions on a five times finer scale. Now (j) = const contours are 
plotted for every 0.1% change in (f). Figure 18 is the finer scale equivalent of 
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FIG. 19. (a) Contour plot of the forward ION distribution function (v > 1) for K= 1.6T. Distribu- 
tion plotted every 0.1%. Compare to Fig. 20 for y > 1. (b) Contour plot of the backward ION distribu- 
tion function (y> 1) for K= 1.6T. Distribution plotted every 0.1 %. Compare to Fig. 20 for y> 1. 
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FIG. 20. Contour plot of .forward (left) and backward (right) ION distribution functions for 
K= 1.6T. Distribution plotted every 0.5%. 

Fig. 8 and refers to ions in the v -’ region (and v- ’ - v”’ transition). In Fig. 19, we 
show the y > 1 region for ions with K = 1.6T; it should be compared with Fig. 20. 
Figure 21 shows the y > 1 portion of the forward distribution for electrons for 
K= 1.2T, which goes with Fig. 17. 

From all the pictures given so far it is clear that (f) tries to be symmetric in 0 
for large y values regardless of its behavior in the ripple-trapped region. This is par- 
ticularly noticeable in the pictures which have (fr) in the l/v regime. For y < 1, 
(fi) -sin8 and for ye 1, (fi) mcos 8. See Figs. 18 and 19 for ions, and Fig. 21 
for electrons. The symmetry for y $ 1 comes about due to the large free-streaming 
phase-space flows (0) and j for blocked and passing particles. 
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FIG. 21. Contour plot of the forward ELECTRON distribution function (y> 1) for K=7.2T. 
Distribution plotted every 0.1 %. Comoare to Fie. 17. 



STELLARATOR TRANSPORT 165 

4 

Y 

4 

4 

Y 

4 

3 

~ 
-It 

” 
+TI 

FIG. 22. Contour plots of the second mesh of forward (left) and backward (right) ION distribution 
functions for K=0.4T. Distribution plotted every 0.1 %. Compare to Fig. 18. 

The higher-order meshes in y do not exhibit much structure to the eye. They 
show basically vertically oriented contours, roughly symmetric in 0. As an example, 
in Fig. 22, the second mesh, from y = 3 to y = 5, to be connected onto the first 
mesh of Fig. 18 is shown. 

VII. SUMMARY AND CONCLUSIONS 

We have developed what could be called a “two-and-a-half” dimensional numeri- 
cal code, FLOCS, to compute the ba distribution function in stellarators, and thus 
to compute interesting variables such as radial fluxes, the self-consistent ambipolar 
radial electric field, parallel fluid flows, and parallel currents. It extends the range 
of validity of the 2D Fokker-Planck code, FPSTEL [3,4], a code designed to 
compute radial particle fluxes of a single species with given energy. The designation 
24 reflects the fact that the code itself is 2D, in ( y, 6), but incorporates the impor- 
tant dependences on a third variable, the energy E. 

An importance feature of FLOCS is that it is not limited to ripple-trapped par- 
ticles; toroidally blocked and passing particles are also treated with sufficient 
accuracy. In addition, the full collision operator, including momentum-restoring 
terms, has been employed. Therefore, FLOCS can compute parallel currents. 
FLOCS deals with the “entire” velocity range, up to y N 100. To accommodate 
such large y values, a multi-mesh numerical procedure was devised. 



166 D'HAESELEER, HITCHON, AND SHOHET 

From the contour plots presented in Section VI, it can be concluded that most 
of the structure in (f) is confined to the region y < 3. However, it is the shift in 
(f) (i.e., the asymmetry between forward and backward particles) for large y 
values that is responsible for the parallel flows and current. 
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